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Abstract. We study a fully-connected parity machine withK hidden units for continuous
weights. The geometrical structure of the weight space of this model is analysed in terms of
the volumes associated with the internal representations of the training set. By examining the
asymptotic behaviour of order parameters in the largeK limit, we find the maximum number
αc, the storage capacity, of patterns per input unit to beK lnK/ ln 2 up to leading order,
which saturates the mathematical bound given by Mitchison and Durbin. Unlike the committee
machine, the storage capacity per weight remains unchanged compared with the corresponding
tree-like architecture.

1. Introduction

Since Gardner’s pioneering work [1], statistical mechanics has proved to be a useful tool
to study feed-forward neural networks. In particular, it has allowed the derivation of the
storage capacity and the generalization error of neural networks inferring a rule by examples.
Therefore, the investigation via statistical mechanics in various feed-forward neural networks
constitutes a subject of current interest [2, 3].

For storage capacity, Barkaiet al [4] obtained the storage capacity of a tree-like parity
machine with non-overlapping receptive fields (NRF), for continuous weights. Their value
is exact within the one-step replica-symmetry-breaking (RSB) scheme [5] and satisfies the
mathematical bound obtained by Mitchison and Durbin [6]. Later, Barkaiet al [7] and
Engel et al [8] considered committee machines and found many interesting results. They
found that, for a fully-connected machine, permutation symmetry, that is the invariance of
output under permutation of hidden units, breaks as the number of input patterns increases.
This permutation symmetry breaking was also observed for generalization problems [9] and
is known to be characteristic of fully-connected architectures.

Monasson and O’Kane [10] proposed a new statistical mechanics formalism which can
analyse the weight space structure related to the internal representations of hidden units. It
was applied to single-layer perceptrons [11–13] as well as multi-layer networks [14–16].
Monasson and Zecchina have successfully applied this formalism to both the NRF committee
and parity machines [14]. They suggested that replica symmetric (RS) solutions under this
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new formalism can yield reliable results equivalent to the one-step RSB solution in the
conventional Gardner method. Recently, Xionget al [18] and Urbanzik [17] independently
obtained the same storage capacity for a fully-connected committee machine via this new
approach. Using the Gardner approach, Kwonet al [19] also obtained a similar value which
is different by only a constant factor, showing the same scaling behaviour in largeK.

In the present paper, we present the analysis of weight space associated with internal
representations for a parity machine with fully-connected architecture and continuous
weights. Most attention will be paid to the limit of largeK hidden units. The scaling
of the order parameters is studied analytically and the storage capacity is obtained up to
leading order.

2. Analytical formalism

We consider the fully-connected parity machine withN input units,K hidden units and
one output unit, where the weights between hidden units and the output unit are set to 1.
Every pair of input and hidden units is connected by weightJli , wherei = 1, . . . , N label
the input units andl = 1, . . . , K label the hidden units. We consider the case of continuous
weights with spherical constraint,

∑N
i J

2
li = N . Input patterns are represented byξµi where

µ = 1, . . . , P are indices for the patterns. The output in response to an input patternµ is
given by

∏
l τ

µ

l with τµl = sgn(Jl · ξµ) representing the internal state of hidden unitl.
GivenP patterns with output codesσµ, the learning process in a layered neural network

can be interpreted as selecting cells in the weight space corresponding to a set of suitable
internal representationsτ = {τµl }, each of which has a non-zero elementary volume defined
by

Vτ = Tr{Jli }
∏
µ

2

(
σµ
∏
l

τ
µ

l

)∏
µ,l

2

(
τ
µ

l

∑
i

Jliξ
µ

i

)
(1)

where2(x) is the Heaviside step function. The Gardner volumeVG, i.e. the volume of the
weight space which satisfies the given input–output relations{ξµi } → σµ, can be written as
the sum of the cells over all internal representations:

VG =
∑
τ

Vτ . (2)

As mentioned in [10, 14], the method adopted here is based on the analysis of the
detailed decomposition of the Gardner volumeVG in elementary volumesVτ associated
with a possible internal representation. The distribution of elementary volumes can be
derived from the free energy

g(r) = − 1

Nr
ln

(∑
τ

V rτ

)
(3)

where the overbar denotes the average overξ
µ

i and σµ. The entropyN [w(r)] and the
typical sizew(r) = −(1/N) lnVτ of volume Vτ can be obtained through the Legendre
transformations:

N [w(r)] = − ∂g(r)
∂(1/r)

w(r) = ∂[rg(r)]

∂r
. (4)

The entropiesND = N [w(r = 1)] andNR = N [w(r = 0)] are of most importance. In
the thermodynamic limit,(1/N)ln(VG) = −g(r = 1) is dominated by elementary volumes
of sizew(r = 1) with the number exp(NND) of internal representations. Furthermore, the
most numerous elementary volumes have sizew(r = 0) and number exp(NNR) of internal
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representations. The vanishing condition for the entropies is related to the zero volume
condition forVG and thus gives the storage capacity.

The replicated partition function for the fully-connected parity machine reads(∑
τ

V rτ

)n
=
∑
{τµαl }

Tr{J αali }
∏
µα

2

(∏
l

τ
µα

l

) ∏
µlαa

2

(
τ
µα

l

∑
i

J αali ξ
µ

i

)
(5)

with a = 1, . . . , r and α = 1, . . . , n. One can setσµ to 1 for a symmetric distribution
of input patterns. Differing from the conventional Gardner approach, two kinds of replica
indices for the weights are introduced. The first comes from the integer powerr of internal
volumes appearing in the partition function and the second from the conventional replica
trick. Introducing the order parameters as

Q
αβab

lk = 1

N

∑
i

J αali J
βb

ki (6)

as observed in our previous calculation [18], the RS ansatz implies the five sets of order
parameters

Q
αβab

lk =



q∗ (l = k, α = β, a 6= b)

q (l = k, α 6= β)

c (l 6= k, α = β)

d∗ (l 6= k, α = β, a 6= b)

d (l 6= k, α 6= β).

(7)

q∗ andq are known to be the typical overlaps between two weight vectors corresponding
to the same and to different internal representationsτ , respectively [14]. For the fully-
connected architecture, additional order parametersc, d∗ and d have been introduced,
which describe the correlations between weights that leave the same input unit and arrive
at different hidden units. c and d∗ characterize those correlations within one internal
representation, whereasd correlates different internal representations.

By using the standard saddle-point method in theN →∞ limit, we find

g(r) = −1

2

[
(K − 1)(q − d)

1− q∗ + r(q∗ − q)− [c − d∗ + r(d∗ − d)]
+K − 1

r
ln{1− q∗ + r(q∗ − q)− [c − d∗ + r(d∗ − d)]}

+ q + (K − 1)d

1− q∗ + r(q∗ − q)+ (K − 1)[c − d∗ + r(d∗ − d)]
+1

r
ln{1− q∗ + r(q∗ − q)+ (K − 1)[c − d∗ + r(d∗ − d)]}

+(K − 1)

(
1− 1

r

)
ln(1− q∗ − c + d∗)

+
(

1− 1

r

)
ln[1− q∗ + (K − 1)(c − d∗)]

]
− α
r

∫
Dx

∫ ∏
l

Dyl

× ln

[
Trτl2

(∏
l

τl

)∫
Dz

∫ ∏
l

Dul

(∫
Dv

∏
l

H (�l)

)r]
(8)
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where we have putDx = exp(−x2/2)/
√

2π , H(y) = ∫∞
y
Dx and

�l =
√
q∗ − q − d∗ + d ul + (

√
c − d∗ v +√q − d yl +

√
d∗ − d z+√d x)τl√

1− q∗ + d∗ − c . (9)

Hereα denotesP/N , the number of patterns per input unit.
The order parameters can now be found from the stationary condition ofg(r). Then

one can estimate the valuesα = αD for ND = 0 andα = αR for NR = 0. αD determines
when the volumes of the most dominant size comprising the Gardner volumeVG vanish and
αR determines when the most numerous volumes vanish. In general, the storage capacity
αc should satisfy the inequalityαD 6 αR 6 αc. For the NRF parity machine, it was found
asymptotically in the largeK limit that αD = αR = αc = lnK/ ln 2 [14], agreeing with
the result found from the Gardner approach [7]. For committee machines, the values ofαD
were found for both the NRF [14] and ORF [17, 18] cases, also showing good agreement,
other than a constant factor

√
2, with the result from the Gardner approach [19]. This

discrepancy observed in the committee machines might come from the different levels of
RSB scheme used in the two approaches: an RS calculation in the new approach based
on internal representations and an 1RSB in the conventional Gardner approach. In the
following we will consider the ORF parity machine and find the asymptotic values ofαD
andαR.

3. Storage capacity in largeK limit

We investigate the asymptotic expression for the storage capacity in the limit of largeK

hidden units. There is a particular phenomenon, permutation symmetry breaking (PSB),
which is only observed in fully-connected machines. Permutation symmetry (PS) is
invariance of the output under the permutation of the hidden units. From the usual view of
a valley landscape, which is useful in spin-glass-like systems with broken ergodicity, the
Gardner volume for a smaller number of patterns is obtained within a single valley. Given
a weight vector inside this single valley, the other weight vectors transformed by permuting
hidden units then also lie in the same valley. PS is preserved in this case. As a result, there
is no preferred alignment of hidden units so that on-site overlap between different sites
are not distinguishable and found to be at mostO(K−1) vanishing in the leading order.
For an increased number of patterns, the weight space constituting the Gardner volume is
decomposed into many valleys. Weight vectors with different alignment of hidden units
then belong to different valleys, soq∗, that is the largest on-site overlap, has a non-zero
value. This stage is called the PSB phase. In this phase, as the number of patterns increase,
q∗ → 1 and the machine reaches its maximal storing capability. The shift from the PS to
PSB phase is expected to be driven by a phase transition, as observed for the committee
machine [17, 19]. We concentrate here only on the PSB phase in order to find the storage
capacity.

For fully-connected machines, there appear order parameters between different hidden
units: c, d and d∗. One can observe from the expression of the free energy that they
contribute in rescaled forms:(K−1)c, (K−1)d and(K−1)d∗. For the committee machine
these rescaled order parameters were found to be ofO(1) to leading order. Corrections were
also found [18], but they were not necessary in order to find only the dominant term of the
storage capacity. This is also true in this study of the parity machine.

First, we concentrate on ther → 1 limit, which corresponds to the internal
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representations giving the dominant contribution to the Gardner volumeVG. In this limit,

g(r) ' g(1)+ (r − 1)ND. (10)

The free energyg(1) is independent ofq∗ andd∗, and is given by

g(1) = −1

2

[
(K − 1)(q − d)
1− q − (c − d) + (K − 1) ln[1− q − (c − d)]

+ q + (K − 1)d

1− q + (K − 1)(c − d) + ln[1− q + (K − 1)(c − d)]
]

−α
∫
Dx

∫ ∏
l

Dyl ln

[
Trτl2

(∏
l

τl

)∫
Dz

∏
l

H (Ql)

]
(11)

where

Ql =
√
c − d z+√q − d yl +

√
d x√

1− q + d − c τl. (12)

The explicit form ofND is

ND = 1

2

[
(K − 1)(q − d)[q∗ − q − (d∗ − d)]

(1− q − c + d)2

+(K − 1) ln[1− q − (c − d)] − (K − 1)[q∗ − q − (d∗ − d)]
1− q − (c − d)

+ [q + (K − 1)d][q∗ − q + (K − 1)(d∗ − d)]
[1− q + (K − 1)(c − d)]2

−(K − 1) ln(1− q∗ − c + d∗)− ln[1− q∗ + (K − 1)(c − d∗)]
+ ln[1− q + (K − 1)(c − d)] − q

∗ − q + (K − 1)(d∗ − d)
1− q + (K − 1)(c − d)

]
−α

∫
Dx

∫ ∏
l

Dyl

×Trτl2(
∏
l τl)

∫
Dz

∫ ∏
l Dul

∫
Dv

∏
l H (�l) ln[

∫
Dv

∏
l H (�l)]

Trτl2(
∏
l τl)

∫
Dz

∏
l H (Ql)

+α
∫
Dx

∫ ∏
l

Dyl ln

[
Trτl2

(∏
l

τl

)∫
Dz

∏
l

H (Ql)

]
. (13)

Notice thatg(1) has the same expression as the RS free energy found from the Gardner
approach, which is generally true for both the parity and committee machines, irrespective
of NRF and ORF architectures.g(1) is a function ofq, (K − 1)c and (K − 1)d only,
which can be found from the saddle-point condition forg(1). For the committee machine,
it was shown thatq → 1, (K − 1)c ' −1 and(K − 1)d ' −1. q as well asq∗ showed
PSB. However, we observe a quite different behaviour in these order parameters for the
parity machine. We find thatq preserves PS;q = 0. Maybe the most different property is
that (K − 1)c = 0 and(K − 1)d = 0 to leading order. Corrections are not necessary for
the dominant term of the storage capacity. This simple structure makes further calculations
easy.q∗ and(K − 1)d∗ appear only ing′(1), i.e.ND. We find

1− q∗ ' π202

2α2
(K − 1)d∗ ∼ 1− q∗ (14)
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with 0−1 = −√π ∫ duH(u) lnH(u) ' 0.62. This shows that PS is broken inside the same
internal representation. The detailed expression for(K − 1)d∗ is not needed. Then the
asymptotic expression for the entropyND is

ND ' K

2
+K lnα − α ln 2 (15)

which vanishes atα = αD ' K lnK/ ln 2.
Second, we consider the limitr → 0. In this limit q∗ behaves as 1− q∗ = r/µ,

whereµ → ∞. As in the r → 1 limit, one finds that(K − 1)c = 0, (K − 1)d = 0 and
(K − 1)d∗ ∼ 1− q∗ to leading order. Then the free energy is given by

rg(r) ' −K
2

[ln(1− q∗ + rq∗)− ln(1− q∗)]

−α ln

[
Trτl2

(∏
l

τl

)∏
l

∫
DulH

r

(√
q∗

1− q∗ ul
)]

' − K
2

ln(1+ µ)+ α ln 2−Kα ln

[
1+ 1√

1+ µ
]
. (16)

The saddle-point equation with respect toµ gives
√
µ ' α. Finally, we obtain the typical

logarithmNR of the total number of internal representations,

NR ' K +K lnα − α ln 2 (17)

which vanishes atα = αR ' K lnK/ln2. We have found thatαD = αR to leading order.
Therefore, we expect that the dominant term of the asymptotic value of the storage capacity
is given by

αD = αR = αc = K lnK

ln 2
. (18)

The storage capacity per weight of the fully-connected parity machine is lnK/ln2, which
satisfies the mathematical bound∼ lnK by Mitchison and Durbin [6].

It is interesting to compare this result with the storage capacity of the NRF parity
machine [4, 14]. The storage capacity per weight remains unchanged for the fully-connected
case. This phenomena is different from the case of the committee machines, where the
storage capacity per weight for the ORF case is larger than that for the NRF case [14, 17–19].

We argue that this feature comes from the unique structure of the fully-connected parity
machine, which is characterized by global symmetry [4] as well as permutation symmetry.
For the fully-connected committee machine near saturated input patterns, PS is broken both
inside the same internal representation and between different internal representations, i.e.
q∗ 6= d∗ and q 6= d. However, in the fully-connected parity machine, PS is broken only
inside the same internal representation, whereas PS between different internal representations
is preserved due to the global symmetry of the system, i.e.q∗ 6= d∗ andq = d. As a result,
the storage capacity per weight remains unchanged for the fully-connected parity machine.

4. Summary

In this paper, we have presented a theoretical investigation of the storage capacity of the
fully-connected parity machine with continuous weights. The geometrical structure of the
weight space has been analysed using the new method proposed by Monasson and O’Kane
[10] and developed by Monasson and Zecchina [14, 15]. By examining the asymptotic
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behaviour of order parameters in the largeK limit, we find a reliable estimate of the
storage capacityαc to beK lnK/ln2 without using the RSB scheme.

In the Gardner approach for the parity and committee machines, the RS calculation
leads to a wrong result. However, in this approach based on the analysis of internal
representations, the RS calculation seems to give a reliable result. A small discrepancy of
a factor

√
2 between the two approaches was observed for the committee machine [19].

For the parity machine, there is no such discrepancy found in the NRF case [4, 15]. One
can expect a similar coincidence between the two approaches in the ORF case, as has been
shown in this study. As mentioned in [14, 15], in the NRF case the instability of the RS
solution for finiteK decreases with increasingK. Then a similar stability analysis in the
ORF case deserves further research. It is also interesting to consider this problem via the
Gardner approach.
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